
FreeBSD on IBM PowerNV

Patryk Duda
pdk@semihalf.com

Wojciech Macek
wma@FreeBSD.org, wma@semihalf.com

Michał Stanek
mst@semihalf.com

mailto:pdk@semihalf.com
mailto:wma@FreeBSD.org
mailto:wma@semihalf.com
mailto:mst@semihalf.com

Presentation plan

● Hardware platform
○ Power8 and PowerNV
○ S821LC

● Power8 system internals
○ ABI and TOC

● Porting
○ Initial FreeBSD state
○ Bugs, bugs, bugs...

● Current state and future work
● Performance measurements
● Q&A

Presentation plan

● Hardware platform
○ Power8 and PowerNV
○ S821LC

● Power8 system internals
○ ABI and TOC

● Porting
○ Initial FreeBSD state
○ Bugs, bugs, bugs...

● Current state and future work
● Performance measurements
● Q&A

POWER9 core

Hardware

S821LC system:
● dual socket
● 128 cores (2 x 8CPUs x 8SMT)
● 128GB RAM
● 960GB Intel NVMe SSD
● 2x25G Chelsio NIC

PowerKVM and PowerNV software stack

PowerNV PowerKVM

PowerKVM and PowerNV software stack

Flexible Service Processor (FSP)
● remote console
● server health and management

Open Process Automation Library (OPAL)
● Hypervisor
● Abstraction for:

○ interrupt management
○ PCIe configuration
○ system console
○ reset, power cycle
○ IOMMU set up

Presentation plan

● Hardware platform
○ Power8 and PowerNV
○ S821LC

● Power8 system internals
○ ABI and TOC

● Porting
○ Initial FreeBSD state
○ Bugs, bugs, bugs...

● Current state and future work
● Performance measurements
● Q&A

Presentation plan

● Hardware platform
○ Power8 and PowerNV
○ S821LC

● Power8 system internals
○ ABI and TOC

● Porting
○ Initial FreeBSD state
○ Bugs, bugs, bugs...

● Current state and future work
● Performance measurements
● Q&A

ABI and TOC - registers

R0 volatile Used in function prologs.

R1 dedicated Stack pointer

R2 dedicated TOC pointer

R3-R12 volatile Function parameters / scratch registers

R13 reserved

R14-R31 non-volatile Must be preserved across function calls

LR dedicated Link register

CTR dedicated Loop counter / 64-bit register for branches

ABI and TOC

TOC - table of contents:
● usually, each C-file has its own TOC table,
● a dictionary for all symbols used inside a file,
● contains VA of function and new TOC pointer.

.toc_base_XX:

...
printf:

0x134520 // VA of .printf
0x561230 // new TOC for .printf

...

.printf: /* VA = 0x134520 */
mfspr r0, lr
std r31, r1, 0xfff8
std r0, r1, 0x10
stdu r1, r1, 0xff70
or r31, r1, r1
std r4, r31, 0xc8
...

ABI and TOC - function call

.toc_base_XX:

...
printf: // at offset TB+0x160

0x134520 // VA of .printf
0x561230 // new TOC for .printf

...

// in C: printf(...)

// in Assembly:
std r2, 40(r1) // save current TOC
ld r8, 0x160(r2) // load VA of .printf
ld r2, 0x168(r2) // new TOC for .printf
mtctr r8 // move VA to CTR
blctr // jump to CTR
ld r2, 40(r1) // restore TOC

Presentation plan

● Hardware platform
○ Power8 and PowerNV
○ S821LC

● Power8 system internals
○ ABI and TOC

● Porting
○ Initial FreeBSD state
○ Bugs, bugs, bugs...

● Current state and future work
● Performance measurements
● Q&A

Presentation plan

● Hardware platform
○ Power8 and PowerNV
○ S821LC

● Power8 system internals
○ ABI and TOC

● Porting
○ Initial FreeBSD state
○ Bugs, bugs, bugs...

● Current state and future work
● Performance measurements
● Q&A

Porting - initial FreeBSD state

In-kernel support:
● generic ppc64 support in the kernel
● PMAP for Power architecture (AIM)

PowerNV project branch:
● console output on hardware
● non-working PCI driver
● boot to multiuser in SMP on Qemu
● boot to multiuser in SMP on hardware with embedded rootfs

Porting - what was missing

Missing features:
● PCIe driver needs to be validated on hardware,
● bootstrap must be aware of endianness change between loader and kernel.

What actually was done:
● IOMMU support for PCIe,
● tons of stability fixes,
● eliminated race conditions in SMP code,
● endianness robustness (loader, NVMe, bootstrap),
● performance optimization.

Presentation plan

● Hardware platform
○ Power8 and PowerNV
○ S821LC

● Power8 system internals
○ ABI and TOC

● Porting
○ Initial FreeBSD state
○ Bugs, bugs, bugs...

● Current state and future work
● Performance measurements
● Q&A

Bugs, bugs, bugs...

Few examples of issues we were dealing with:
- TOC in assembly routines (context switch),
- endianness in drivers (cxgbe, NVMe),
- edge-triggered IRQ and why they are dangerous,
- poor performance in SMT group.

Bug: TOC troubles in context switch

Observation:
● FreeBSD scheduler panicked in sched_switch with assert

MPASS(td->td_lock == TDQ_LOCKPTR(tdq));

● Depending on build, reproduction rate was either 100% or 0%
● Adding printfs (or comments?) “fixed” the issue

Bug: TOC change in context switch
sched_switch (fragment):

...

cpu_switch(td, newtd, mtx);

cpuid = PCPU_GET(cpuid);

tdq = TDQ_CPU(cpuid);

...

MPASS(td->td_lock == TDQ_LOCKPTR(tdq));

...

#defineTDQ_CPU(x)

(&tdq_cpu[(x)])

.toc_base:
<other toc entries>
.tdq_cpu: // tdq_cpu = toc_base + 1134

0x11223300 // VA of tdq_cpu
<other toc entries>

TDQ_CPU:
// ABI: r2 == toc_base
ld r3, 1134(r2)
// now r3 contains a pointer to tdq_cpu[0]

Bug: TOC change in context switch
sched_switch (fragment):

…

// r2 = TOC for SCHED_SWITCH

// update r2 with TOC for CPU_SWITCH prior the call

cpu_switch(td, newtd, mtx); // NOTE: cpu_switch modifies stack pointer

// load previous TOC from the stack

// ERROR: here, r2 == TOC for cpu_switch

cpuid = PCPU_GET(cpuid);

tdq = TDQ_CPU(cpuid);

...

MPASS(td->td_lock == TDQ_LOCKPTR(tdq));

...

Bug: endianness in NVMe and cxgbe(4)

Problem:
● Not many drivers are designed to work in BE environment
● NVMe: intensive usage of bitfields

union cc_register {

uint32_t raw;

struct {

uint32_t en : 1;

uint32_t reserved1 : 3;

uint32_t css : 3;

uint32_t mps : 4;

(...)

} bits __packed;

} __packed;

● CXGBE: few nits with endianness parsing
● NVMe: +1000LOC to add BE support

Bug: OPAL and edge-triggered IRQs

Problem:
● After few hundreds seconds running iperf3 over cxgbe interface, the traffic

stops and TX queue of the NIC becomes unresponsive.

Bug: OPAL and edge-triggered IRQs

Device sets MSI-x pending bit

MSI-in-service

Mask IRQ line

Assert IRQ if not in MSI-in-service

CPU runs IRQ handler

Leave MSI-in-service

Execute ithread

Unmask IRQ line

MSI-in-service

Bug: OPAL and edge-triggered IRQs

Device sets MSI-x pending bit

MSI-in-service

Mask IRQ lineAssert IRQ if not in MSI-in-service

CPU runs IRQ handler

Leave MSI-in-service

Execute ithread

Unmask IRQ line

Device sets MSI-x pending bit

Assert IRQ if not in MSI-in-service

NIC
INTERRUPT

NIC
INTERRUPT

ERROR: locked, no MSI-x can arrive

MSI-in-service

Bug: OPAL and edge-triggered IRQs

Device sets MSI-x pending bit

MSI-in-service

Mask IRQ lineAssert IRQ if not in MSI-in-service

CPU runs IRQ handler

Leave MSI-in-service

Execute ithread

Unmask IRQ line

Device sets MSI-x pending bit

Assert IRQ if not in MSI-in-service

NIC
INTERRUPT

NIC
INTERRUPT

Leave MSI-in-service

CPU runs IRQ handler

Mask IRQ line

FIX: do it unconditionally

Bug: poor performance

Problem:
● In a following test

~# iperf3 -s > /dev/null &
~# iperf3 -c 127.0.0.1 -P2

the system got only 600Mb/s of a total throughput, while Linux shows 70Gb/s.

Bug: poor performance

Debugging:
● Problem was narrowed down to be a generic issue with instruction execution

speed. Simple test was created (time of 4G iterations was measured):
mtspr ctr, r3

loop:

bdnz+ loop

blr

● Results:
○ Linux UP: 12.5s
○ Linux SMP: 5.5s
○ FreeBSD UP: 12.5s
○ FreeBSD SMP: 45s

Bug: poor performance

Idle thread on FreeBSD does:

#definecpu_spinwait() __asm __volatile("or 27,27,27") /* yield */

Documentation says:

IBM: “btw, this opcode is not implemented”
not mentioned in any erratas...

Bug: poor performance
CNAME(rstcode):

/*

 * Check if this is software reset or

 * processor is waking up from power saving mode

 * It is software reset when 46:47 = 0b00

 */

mfsrr1 %r9 /* Load SRR1 into r1 */

andis. %r9,%r9,0x3 /* Logic AND with 0x30000 */

beq 2f /* Branch if software reset */

bnel 1f

.llong cpu_wakeup_handler

/* It is software reset */

…

static void

powernv_cpu_idle(sbintime_t sbt)

{

if (sched_runnable())

return;

spinlock_enter();

// Typical architectures use wait-for-interrupt

// wfi();

enter_power_save();

spinlock_exit();

}

Presentation plan

● Hardware platform
○ Power8 and PowerNV
○ S821LC

● Power8 system internals
○ ABI and TOC

● Porting
○ Initial FreeBSD state
○ Bugs, bugs, bugs...

● Current state and future work
● Performance measurements
● Q&A

Current state and future work

Supported features :
- PowerNV on Power8 in Big Endian mode,
- OPAL integration

- console,
- interrupts,
- IOMMU configuration.

- PCIe bus with following devices:
- XHCI
- NVMe
- Chelsio cxgbe(4) compatible NIC

- Power management
- reset, on, off
- core deep sleep

Current state and future work

Missing pieces:
- Support for other drivers in Big Endian mode

- AHCI
- Intel NIC

- Fix dtrace
- Optimize libc to utilize SIMD instructions

Roadmap:
- Provide support for Power9 with:

- Little Endian,
- XIVE interrupt controller
- Radix page tables MMU

Presentation plan

● Hardware platform
○ Power8 and PowerNV
○ S821LC

● Power8 system internals
○ ABI and TOC

● Porting
○ Initial FreeBSD state
○ Bugs, bugs, bugs...

● Current state and future work
● Performance measurements
● Q&A

Performance - NGINX

Test setup:
● Power8 or 8-core Intel CPU running FreeBSD (DUT),
● Intel PC connected over 10Gb link with DUT,
● stock NGINX serving 200b file over HTTP,
● WRK tool being run on Intel PC.

Test:
● Run following command for 1/2/4/8/16 NGINX worker threads:

wrk -t1 -c100 -d30s http://192.168.1.10/index.html

http://192.168.1.10/index.html

Performance - NGINX

NVMe IOPS

Acknowledgements

Special thanks go to:

● Nathan Whitehorn for initial work done for PowerNV and all help,
● Kevin Bowling (Limelight Networks) for organizing this project,
● Sam Montoya (QCM Technologies) for providing Power8 hardware.

Questions?

