Software
Meets
Hardware

at
Semihalf

1Nl

FreeBSD on IBM PowerNV

Patryk Duda

pdk@semihalf.com

Wojciech Macek

wma@FreeBSD.org, wma@semihalf.com

Michat Stanek

mst@semihalf.com

mailto:pdk@semihalf.com
mailto:wma@FreeBSD.org
mailto:wma@semihalf.com
mailto:mst@semihalf.com

Software
Meets

Hardware

at
Semihalf
151

Presentation plan

Hardware platform

o Power8 and PowerNV
o S821LC

Power8 system internals
o ABland TOC
Porting
o Initial FreeBSD state
o Bugs, bugs, bugs...
Current state and future work
Performance measurements

Q&A

Software
Meets

Hardware

at
Semihalf
151

Presentation plan

Hardware platform

o Power8 and PowerNV
o S821LC

Power8 system internals
o ABland TOC
Porting
o Initial FreeBSD state
o Bugs, bugs, bugs...
Current state and future work
Performance measurements

Q&A

Software
Meets
Hardware
at
Semihalf

. POWERS8 Processor

Technology
= 22nm SOI, eDRAM, 15 ML 650mm2 Caches
Cores = 512KB SRAM L2/ core
12 cores (SMT8) » 96 MB eDRAM shared L3

8 dispatch, 10 issue, » Upto 128 MB eDRAM L4
Core | Core (off-chip)

16 exec pipe

2X internal data

flows/queues L2 L2 L2
. 8"!.3 L

L2] L2 Memory
Enhanced prefetching : Region & » Up to 230 GB/s

64K data cache, Mem. Cm_l L3 Cache & Chip Interconnect | Mem_Ciri sustained bandwidth
32K instruction cache ‘

SJ0JRIR 20Y
SHUIT JNS 18307

Bus Interfaces
L2 1 L = Durable open memory

Accelerators T YV

Crypto & memory attach interface
expansion Integrated PCle Gen3

Transactional Memory SMP Interconnect
VMM assist CAPI (Coherent
Data Move / VM Mobility Energy Management Accelerator Processor
» On-chip Power Management Micro-controller Interface)
* Integrated Per-core VRM
« Cntical Path Monitors

SJOJRBP Y
SHUTT JNS 18907

Core | Core

Software
Meets
Hardware
at
Semihalf
IS1.

POWERS8 Memory Organization

Centaur Centaur
DRAM Memory

Memory
Chips Buffers Buffers

F S :

s MINNN —3 P
- > N

; X,

: _ Same

—p

> ;-;-~ :

. POWERS
T Processor

% Up to 8 high speed channels, each running up to 9.6 Gb/s for up to 230 GB/s sustained
= Up to 32 total DDR ports yielding 410 GB/s peak at the DRAM

» Upto 1 TB memory capacity per fully configured processor socket (at initial launch)

S POWERS9 core

Hardware

at e .
Semihalf New POWERS Cores optimized for Accelerator Signaling DDR4 Interface Leadershlp

I81. Analytics, Cloud and Big Data IIII Hardware Acceleration Platform

* 24 SMT4 Cores per Chip « Enhanced on-chip acceleration
(] Core] Core
« Efficient agile pipeline

Two Socket Support * Nvidia NVLink 2.0: High
Direct Drive DDR4 Memory bandwidth and advanced new
PCle
« POWER ISAv3.0 MM
Enhanced Cache Hierarchy

« 8 DDR4 Channels fCtazltDl:rZSO(ZgGhLlnk)t Brai

. .U. Coherentaccelerator
* 1866-2666 MHz DIMM Support and storage attach (PCle G4)
+ 120MBNUCA L3 architecture

« New CAPI: Improved latency
and bandwidth, open interface
(25G Link)

New Core Microarchitecture

« Strongerthread performance

o)
c
©
c
=
w
o
O
(48

SMP Interconnect &
Off-ChipAccelerator Enablement

State of the Art I/O Subsystem
« PCle Gen4 — 48 lanes

« 12 x 20-way associative regions Accelerator Signaling DDR4 Interface H|gh Bandwidth
+ Advanced replacementpolicies Signaling Technology
« Fed by 7 TB/s on-chip bandwidth 14nm finFET Semiconductor . 16 Gb/s interface
Process
— Local SMP

» Improved device performance and
reduced energy

» 17 layer metal stack and eDRAM

Cloud + Virtualization Innovation « 25 Gb/s Link interface

« Quality of service assists
o — Accelerator

« New interrupt architecture
« Workload optimized frequency + 8.0 billion transistors

e Hardware enfarced triicted aveciition

Software

Meets
Hardware
at
Semihalf
IS1.

Hardware

S821LC system:

dual socket

128 cores (2 x 8CPUs x 8SMT)
128GB RAM

960GB Intel NVMe SSD

2x25G Chelsio NIC

Software
Meets

Hardware
at

P PowerKVM and PowerNV software stack

App. App. App.
VM1 VM2 VM3
Userspace applications

g g 3 g
Linux kernel _
g 8

OPAL OPAL

g g g g

Power8 hardware FSP Power8 hardware FSP

PowerNV PowerKVM

Software

Meets
Hardware

P PowerKVM and PowerNV software stack

Flexible Service Processor (FSP)
e remote console
e server health and management

Open Process Automation Library (OPAL)
e Hypervisor

e Abstraction for:
interrupt management
PCle configuration
system console

reset, power cycle
IOMMU set up

o O O O O

Software
Meets

Hardware

at
Semihalf
151

Presentation plan

Hardware platform

o Power8 and PowerNV
o S821LC

Power8 system internals
o ABland TOC
Porting
o Initial FreeBSD state
o Bugs, bugs, bugs...
Current state and future work
Performance measurements

Q&A

Software
Meets
Hardware

at
Semihalf
151

Presentation plan

Hardware platform

o Power8 and PowerNV
o S821LC

Power8 system internals
o ABland TOC
Porting
o Initial FreeBSD state
o Bugs, bugs, bugs...
Current state and future work
Performance measurements

Q&A

Software
Meets
Hardware

at
Semihalf
151

ABIl and TOC - registers

RO

R1

R2
R3-R12
R13
R14-R31
LR

CTR

volatile
dedicated
dedicated
volatile
reserved
non-volatile
dedicated

dedicated

Used in function prologs.
Stack pointer
TOC pointer

Function parameters / scratch registers

Must be preserved across function calls
Link register

Loop counter / 64-bit register for branches

Software
Meets
Hardware

P AB| and TOC

TOC - table of contents:
e usually, each C-file has its own TOC table,
e a dictionary for all symbols used inside a file,
e contains VA of function and new TOC pointer.

printf:

.toc base XX:

0x134520 // VA of .printf

0x561230 // new TOC for .printf

.printf:

mfspr
std
std
stdu
or
std

/* VA
rQo,
r3l,
rQ0,
rl,
r3l,

r4,

= 0x134520 */
lr
rl, Oxfff8
rl, 0x10
rl, O0xff70
rl, rl
r31, 0xc8

Software
Meets

Hardware

at
Semihalf
151

printf:

ABIl and TOC - function call

.toc base XX:

// at offset TB+0x160

0x134520 // VA of .printf

0x561230 // new TOC for

.printt

// in C: printf(...)

// in Assembly:
std r2, 40(rl)
1d r8, 0x160(r2)
1d r2, 0x168(r2)
mtctr r8

blctr

1d «r2, 40(rl)

//
//
//
//
//
//

save current TOC
load VA of .printf
new TOC for .printf
move VA to CTR

Jump to CTR

restore TOC

Software
Meets

Hardware

at
Semihalf
151

Presentation plan

Hardware platform

o Power8 and PowerNV
o S821LC

Power8 system internals
o ABland TOC
Porting
o Initial FreeBSD state
o Bugs, bugs, bugs...
Current state and future work
Performance measurements

Q&A

Software
Meets

Hardware

at
Semihalf
151

Presentation plan

Hardware platform

o Power8 and PowerNV
o S821LC

Power8 system internals
o ABland TOC
Porting
o Initial FreeBSD state
o Bugs, bugs, bugs...
Current state and future work
Performance measurements

Q&A

Software
Meets

Hardware

at
Semihalf
151

Porting - initial FreeBSD state

In-kernel support:

generic ppc64 support in the kernel
PMAP for Power architecture (AIM)

PowerNV project branch:

console output on hardware

non-working PCI driver

boot to multiuser in SMP on Qemu

boot to multiuser in SMP on hardware with embedded rootfs

Software
Meets
Hardware

at
Semihalf
151

Porting - what was missing

Missing features:

PCle driver needs to be validated on hardware,
bootstrap must be aware of endianness change between loader and kernel.

What actually was done:

|IOMMU support for PCle,

tons of stability fixes,

eliminated race conditions in SMP code,
endianness robustness (loader, NVMe, bootstrap),
performance optimization.

Software
Meets

Hardware

at
Semihalf
151

Presentation plan

Hardware platform

o Power8 and PowerNV
o S821LC

Power8 system internals
o ABland TOC
Porting
o Initial FreeBSD state
o Bugs, bugs, bugs...
Current state and future work
Performance measurements

Q&A

Software
Meets

Hardware

at
Semihalf
151

Bugs, bugs, bugs...

Few examples of issues we were dealing with:

TOC in assembly routines (context switch),
endianness in drivers (cxgbe, NVMe),
edge-triggered IRQ and why they are dangerous,
poor performance in SMT group.

Software
Meets
Hardware

at
Semihalf
151

Bug: TOC troubles in context switch

Observation:

FreeBSD scheduler panicked in sched switch with assert
MPASS (td->td_lock == TDQ_LOCKPTR(tdq));

Depending on build, reproduction rate was either 100% or 0%
Adding printfs (or comments?) “fixed” the issue

Software
Meets
Hardware
at

Semihalf
151

Bug: TOC change in context switch

sched_switch (fragment):

cpu_switch(td, newtd, mtx);
cpuid = PCPU_GET(cpuid);

tdq = TDQ_CPU(cpuid);

MPASS (td->td_lock == TDQ_LOCKPTR(tdq));

#tdefine TDQ_CPU(x)
(&tdqg_cpu[(x)])

.toc_base:

<other toc entries>

.tdq_cpu: // tdgq_cpu = toc_base + 1134
0x11223300 // VA of tdq_cpu

<other toc entries>

TDQ_CPU:

// ABI: r2 == toc_base

1d r3, 1134(r2)

// now r3 contains a pointer to tdq_cpu[Q]

Software
Meets
Hardware
at

g Bug: TOC change in context switch

sched_switch (fragment):

// r2 = TOC for SCHED_SWITCH

// update r2 with TOC for CPU_SWITCH prior the call

cpu_switch(td, newtd, mtx); // NOTE: cpu_switch modifies stack pointer
// load previous TOC from the stack

// ERROR: here, r2 == TOC for cpu_switch

cpuid = PCPU_GET(cpuid);

tdgq = TDQ _CPU(cpuid);

MPASS (td->td_lock == TDQ LOCKPTR(tdq));

Software
Meets
Hardware

wP Bug: endianness in NVMe and cxgbe(4)

Problem:
e Not many drivers are designed to work in BE environment

e NVMe: intensive usage of bitfields

union cc_register {
uint32_t raw;
struct {

uint32_t en 1
uint32_t reservedl 3;
uint32_t css T35
uint32_t mps : 4;
(...)

} bits __ packed;

} _ packed;

e CXGBE: few nits with endianness parsing
e NVMe: +1000LOC to add BE support

Software
Meets

Hardware

at
Semihalf
151

Bug: OPAL and edge-triggered IRQs

Problem:

After few hundreds seconds running iperf3 over cxgbe interface, the traffic
stops and TX queue of the NIC becomes unresponsive.

Software
Meets

Hardware

at
Semihalf
151

Bug: OPAL and edge-triggered IRQs

Device sets MSI-x pending bit

Assert IRQ if not in MSI-in-service

MSI-in-service
CPU runs IRQ handler

Mask IRQ line

Leave MSI-in-service

Execute ithread

Unmask IRQ line

Software

Meets
Hardware

&P Bug: OPAL and edge-triggered IRQs

MSI-in-service

_

Device sets MSI-x pending bit ~~ | CPU runs IRQ handler
INTE,\IggUPT Assert IRQ if not iln MSI-in-service / Mask IRQ line
Leave MSI-in-service
Device sets MSI-x pending bit ~~ | Execute ithread
INTE[\Ig(R:’UPT Assert IRQ if not iln MSI-in-service / Unmask IRQ line

ERROR: locked, no MSI-x can arrive |//

MSI-in-service

Software

Meets
Hardware

&P Bug: OPAL and edge-triggered IRQs

MSI-in-service

Device sets MSI-x pending bit CPU runs IRQ handler

NIC

[/
INTERRUPT Assert IRQ if not in MSI-in-service Mask IRQ line

Leave MSI-in-service

Device sets MSI-x pending bit Execute ithread

[
Assert IRQ if not in MSI-in-service

NIC

Unmask IRQ line

INTERRUPT

___+ Leave MSl-in-service

MSI-in-service

FIX: do it unconditionally CPU runs IRQ handler

Mask IRQ line

Software
Meets

Hardware

at
Semihalf
151

Bug: poor performance

Problem:

In a following test
~# iperf3 -s > /dev/null &
~# iperf3 -c 127.0.0.1 -P2
the system got only 600Mb/s of a total throughput, while Linux shows 70Gb/s.

Software
Meets
Hardware

&P Bug: poor performance

Debugging:
e Problem was narrowed down to be a generic issue with instruction execution
speed. Simple test was created (time of 4G iterations was measured):

mtspr ctr, r3

loop:
bdnz+ loop
blr

e Results:
o Linux UP: 12.5s
o Linux SMP: 5.5s
o FreeBSD UP: 12.5s
o FreeBSD SMP: 45s

Software
Meets
Hardware
at

Mg Bug: poor performance

Idle thread on FreeBSD does: &b k
2.0

#define cpu_spinwait() _asm __volatile("or 27,27,27") /* yield */
1.5

Documentation says:

1.0
or 27,27,27
This form of or provides a hint that performance 0.5
will probably be improved if shared resources ded-
icated to the executing processor are released for
use by other processors. SMT1 SMT2 SMT4 SMT8

I

IBM: “btw, this opcode is not implemented”
not mentioned in any erratas...

Software
Meets
Hardware
at
Semihalf

INI.

Bug: poor performance

static void

powernv_cpu_idle(sbintime_t sbt)

{

if (sched_runnable())

return;

spinlock_enter();

// Typical architectures use wait-for-interrupt
/7 wfi();
enter_power_save();

spinlock_exit();

CNAME (rstcode):
/*
* Check if this is software reset or
* processor is waking up from power saving mode

* It is software reset when 46:47 = 0boo

*/
mfsrrl %r9 /* Load SRR1 into rl */

andis. %r9,%r9,0x3 /* Logic AND with ©x30000 */
beq 2f /* Branch if software reset */
bnel 1f

.1llong cpu_wakeup_handler

/* It is software reset */

Software
Meets

Hardware

at
Semihalf
151

Presentation plan

Hardware platform

o Power8 and PowerNV
o S821LC

Power8 system internals
o ABland TOC
Porting
o Initial FreeBSD state
o Bugs, bugs, bugs...
Current state and future work
Performance measurements

Q&A

Software
Meets
Hardware

%P Current state and future work

Supported features :
PowerNV on Power8 in Big Endian mode,
OPAL integration

console,
interrupts,
IOMMU configuration.
PCle bus with following devices:
XHCI
NVMe
Chelsio cxgbe(4) compatible NIC

Power management

reset, on, off
core deep sleep

Software
Meets
Hardware

%P Current state and future work

Missing pieces:
- Support for other drivers in Big Endian mode

AHCI
Intel NIC

- Fix dtrace
- Optimize libc to utilize SIMD instructions

Roadmanp:

- Provide support for Power9 with:

Little Endian,
XIVE interrupt controller
Radix page tables MMU

Software
Meets

Hardware

at
Semihalf
151

Presentation plan

Hardware platform

o Power8 and PowerNV
o S821LC

Power8 system internals
o ABland TOC
Porting
o Initial FreeBSD state
o Bugs, bugs, bugs...
Current state and future work
Performance measurements

Q&A

Software
Meets

Hardware

P Performance - NGINX

Test setup:
e Power8 or 8-core Intel CPU running FreeBSD (DUT),

e Intel PC connected over 10Gb link with DUT,
e stock NGINX serving 200b file over HTTP,
e WRK tool being run on Intel PC.

Test:
e Run following command for 1/2/4/8/16 NGINX worker threads:

wrk -tl -cl00 -d30s http://192.168.1.10/index.html

http://192.168.1.10/index.html

Software
Meets
Hardware
at
Semihalf
IS1.

Performance - NGINX

100000

90000

80000

70000

60000

50000

40000

30000

20000

10000

NGINX HTTP reg/s

4

Number of NGINX workers (threads)

16

w— P owers
Intel 3GHz

Software
Meets
Hardware
at
Semihalf
IS1.

NVMe IOPS

IOPS

500000 = hs=512B, FreeBSD
= bs=4k, FreeBSD

400000 bs=512B, Linux
= hs=4k, Linux

300000

200000

100000

0
1 2 3 4

Instances

Software
Meets

Hardware

at
Semihalf
151

Acknowledgements

Special thanks go to:

Nathan Whitehorn for initial work done for PowerNV and all help,
Kevin Bowling (Limelight Networks) for organizing this project,
Sam Montoya (QCM Technologies) for providing Power8 hardware.

Software
Meets
Hardware

at
Semihalf
151

Questions?

