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. POWERS8 Processor

Technology
= 22nm SOI, eDRAM, 15 ML 650mm2 Caches
Cores = 512KB SRAM L2/ core
12 cores (SMT8) » 96 MB eDRAM shared L3

8 dispatch, 10 issue, » Upto 128 MB eDRAM L4
Core | Core (off-chip)

16 exec pipe

2X internal data

flows/queues L2 L2 L2
. 8"!.3 L

L2 ] L2 Memory
Enhanced prefetching : Region & » Up to 230 GB/s

64K data cache, Mem. Cm_l L3 Cache & Chip Interconnect | Mem_Ciri sustained bandwidth
32K instruction cache ‘
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Bus Interfaces
L2 1 L = Durable open memory

Accelerators T YV

Crypto & memory attach interface
expansion Integrated PCle Gen3

Transactional Memory SMP Interconnect
VMM assist CAPI (Coherent
Data Move / VM Mobility Energy Management Accelerator Processor
» On-chip Power Management Micro-controller Interface)
* Integrated Per-core VRM
« Cntical Path Monitors
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POWERS8 Memory Organization

Centaur Centaur
DRAM Memory

Memory
Chips Buffers Buffers
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. POWERS
T Processor

% Up to 8 high speed channels, each running up to 9.6 Gb/s for up to 230 GB/s sustained
= Up to 32 total DDR ports yielding 410 GB/s peak at the DRAM

» Upto 1 TB memory capacity per fully configured processor socket (at initial launch)
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Hardware

at e .
Semihalf New POWERS Cores optimized for Accelerator Signaling DDR4 Interface Leadershlp

I81. Analytics, Cloud and Big Data IIII Hardware Acceleration Platform

* 24 SMT4 Cores per Chip « Enhanced on-chip acceleration
(] Core] Core
« Efficient agile pipeline

Two Socket Support * Nvidia NVLink 2.0: High
Direct Drive DDR4 Memory bandwidth and advanced new
PCle
« POWER ISAv3.0 MM
Enhanced Cache Hierarchy

« 8 DDR4 Channels fCtazltDl:rZSO(ZgGhLlnk)t Brai

. .U. Coherentaccelerator
* 1866-2666 MHz DIMM Support and storage attach (PCle G4)
+ 120MBNUCA L3 architecture

« New CAPI: Improved latency
and bandwidth, open interface
(25G Link)

New Core Microarchitecture

« Strongerthread performance
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SMP Interconnect &
Off-ChipAccelerator Enablement

State of the Art I/O Subsystem
« PCle Gen4 — 48 lanes

« 12 x 20-way associative regions Accelerator Signaling DDR4 Interface H|gh Bandwidth
+ Advanced replacementpolicies Signaling Technology
« Fed by 7 TB/s on-chip bandwidth 14nm finFET Semiconductor . 16 Gb/s interface
Process
— Local SMP

» Improved device performance and
reduced energy

» 17 layer metal stack and eDRAM

Cloud + Virtualization Innovation « 25 Gb/s Link interface

« Quality of service assists
o — Accelerator

« New interrupt architecture
« Workload optimized frequency + 8.0 billion transistors

e Hardware enfarced triicted aveciition
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Hardware

S821LC system:

dual socket

128 cores (2 x 8CPUs x 8SMT)
128GB RAM

960GB Intel NVMe SSD

2x25G Chelsio NIC
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App. App. App.
VM1 VM2 VM3
Userspace applications

g g 3 g
Linux kernel _
g 8

OPAL OPAL

g g g g

Power8 hardware FSP Power8 hardware FSP

PowerNV PowerKVM
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Flexible Service Processor (FSP)
e remote console
e server health and management

Open Process Automation Library (OPAL)
e Hypervisor

e Abstraction for:
interrupt management
PCle configuration
system console

reset, power cycle
IOMMU set up

o O O O O
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ABIl and TOC - registers

RO

R1

R2
R3-R12
R13
R14-R31
LR

CTR

volatile
dedicated
dedicated
volatile
reserved
non-volatile
dedicated

dedicated

Used in function prologs.
Stack pointer
TOC pointer

Function parameters / scratch registers

Must be preserved across function calls
Link register

Loop counter / 64-bit register for branches
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TOC - table of contents:
e usually, each C-file has its own TOC table,
e a dictionary for all symbols used inside a file,
e contains VA of function and new TOC pointer.

printf:

.toc base XX:

0x134520 // VA of .printf

0x561230 // new TOC for .printf

.printf:

mfspr
std
std
stdu
or
std

/* VA
rQo,
r3l,
rQ0,
rl,
r3l,

r4,

= 0x134520 */
lr
rl, Oxfff8
rl, 0x10
rl, O0xff70
rl, rl
r31, 0xc8
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printf:

ABIl and TOC - function call

.toc base XX:

// at offset TB+0x160

0x134520 // VA of .printf

0x561230 // new TOC for

.printt

// in C: printf(...)

// in Assembly:
std r2, 40(rl)
1d r8, 0x160(r2)
1d r2, 0x168(r2)
mtctr r8

blctr

1d «r2, 40(rl)

//
//
//
//
//
//

save current TOC
load VA of .printf
new TOC for .printf
move VA to CTR

Jump to CTR

restore TOC
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Porting - initial FreeBSD state

In-kernel support:

generic ppc64 support in the kernel
PMAP for Power architecture (AIM)

PowerNV project branch:

console output on hardware

non-working PCI driver

boot to multiuser in SMP on Qemu

boot to multiuser in SMP on hardware with embedded rootfs
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Porting - what was missing

Missing features:

PCle driver needs to be validated on hardware,
bootstrap must be aware of endianness change between loader and kernel.

What actually was done:

|IOMMU support for PCle,

tons of stability fixes,

eliminated race conditions in SMP code,
endianness robustness (loader, NVMe, bootstrap),
performance optimization.
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Bugs, bugs, bugs...

Few examples of issues we were dealing with:

TOC in assembly routines (context switch),
endianness in drivers (cxgbe, NVMe),
edge-triggered IRQ and why they are dangerous,
poor performance in SMT group.
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Bug: TOC troubles in context switch

Observation:

FreeBSD scheduler panicked in sched switch with assert
MPASS (td->td_lock == TDQ_LOCKPTR(tdq));

Depending on build, reproduction rate was either 100% or 0%
Adding printfs (or comments?) “fixed” the issue
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Bug: TOC change in context switch

sched_switch (fragment):

cpu_switch(td, newtd, mtx);
cpuid = PCPU_GET(cpuid);

tdq = TDQ_CPU(cpuid);

MPASS (td->td_lock == TDQ_LOCKPTR(tdq));

#tdefine TDQ_CPU(x)
(&tdqg_cpu[(x)])

.toc_base:

<other toc entries>

.tdq_cpu: // tdgq_cpu = toc_base + 1134
0x11223300 // VA of tdq_cpu

<other toc entries>

TDQ_CPU:

// ABI: r2 == toc_base

1d r3, 1134(r2)

// now r3 contains a pointer to tdq_cpu[Q]
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g Bug: TOC change in context switch

sched_switch (fragment):

// r2 = TOC for SCHED_SWITCH

// update r2 with TOC for CPU_SWITCH prior the call

cpu_switch(td, newtd, mtx); // NOTE: cpu_switch modifies stack pointer
// load previous TOC from the stack

// ERROR: here, r2 == TOC for cpu_switch

cpuid = PCPU_GET(cpuid);

tdgq = TDQ _CPU(cpuid);

MPASS (td->td_lock == TDQ LOCKPTR(tdq));
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Problem:
e Not many drivers are designed to work in BE environment

e NVMe: intensive usage of bitfields

union cc_register {
uint32_t raw;
struct {

uint32_t en 1
uint32_t reservedl 3;
uint32_t css T35
uint32_t mps : 4;
(...)

} bits __ packed;

} _ packed;

e CXGBE: few nits with endianness parsing
e NVMe: +1000LOC to add BE support
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Bug: OPAL and edge-triggered IRQs

Problem:

After few hundreds seconds running iperf3 over cxgbe interface, the traffic
stops and TX queue of the NIC becomes unresponsive.
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Bug: OPAL and edge-triggered IRQs

Device sets MSI-x pending bit

Assert IRQ if not in MSI-in-service

MSI-in-service
CPU runs IRQ handler

Mask IRQ line

Leave MSI-in-service

Execute ithread

Unmask IRQ line
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&P Bug: OPAL and edge-triggered IRQs

MSI-in-service

_

Device sets MSI-x pending bit ~~ | CPU runs IRQ handler
INTE,\IggUPT Assert IRQ if not iln MSI-in-service / Mask IRQ line
Leave MSI-in-service
Device sets MSI-x pending bit ~~ | Execute ithread
INTE[\Ig(R:’UPT Assert IRQ if not iln MSI-in-service / Unmask IRQ line

ERROR: locked, no MSI-x can arrive |//

MSI-in-service
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&P Bug: OPAL and edge-triggered IRQs

MSI-in-service

Device sets MSI-x pending bit CPU runs IRQ handler

NIC

[ /
INTERRUPT Assert IRQ if not in MSI-in-service Mask IRQ line

Leave MSI-in-service

Device sets MSI-x pending bit Execute ithread

[
Assert IRQ if not in MSI-in-service

NIC

Unmask IRQ line

INTERRUPT

___+ Leave MSl-in-service

MSI-in-service

FIX: do it unconditionally CPU runs IRQ handler

Mask IRQ line
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Bug: poor performance

Problem:

In a following test
~# iperf3 -s > /dev/null &
~# iperf3 -c 127.0.0.1 -P2
the system got only 600Mb/s of a total throughput, while Linux shows 70Gb/s.
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&P Bug: poor performance

Debugging:
e Problem was narrowed down to be a generic issue with instruction execution
speed. Simple test was created (time of 4G iterations was measured):

mtspr ctr, r3

loop:
bdnz+ loop
blr

e Results:
o Linux UP: 12.5s
o Linux SMP: 5.5s
o FreeBSD UP: 12.5s
o FreeBSD SMP: 45s
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Idle thread on FreeBSD does: &b k
2.0

#define cpu_spinwait() _asm __volatile("or 27,27,27") /* yield */
1.5

Documentation says:

1.0
or 27,27,27
This form of or provides a hint that performance 0.5
will probably be improved if shared resources ded-
icated to the executing processor are released for
use by other processors. SMT1 SMT2 SMT4 SMT8

I

IBM: “btw, this opcode is not implemented”
not mentioned in any erratas...
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Bug: poor performance

static void

powernv_cpu_idle(sbintime_t sbt)

{

if (sched_runnable())

return;

spinlock_enter();

// Typical architectures use wait-for-interrupt
/7 wfi();
enter_power_save();

spinlock_exit();

CNAME (rstcode):
/*
* Check if this is software reset or
* processor is waking up from power saving mode

* It is software reset when 46:47 = 0boo

*/
mfsrrl %r9 /* Load SRR1 into rl */

andis. %r9,%r9,0x3 /* Logic AND with ©x30000 */
beq 2f /* Branch if software reset */
bnel 1f

.1llong cpu_wakeup_handler

/* It is software reset */
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%P Current state and future work

Supported features :
PowerNV on Power8 in Big Endian mode,
OPAL integration

console,
interrupts,
IOMMU configuration.
PCle bus with following devices:
XHCI
NVMe
Chelsio cxgbe(4) compatible NIC

Power management

reset, on, off
core deep sleep
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%P Current state and future work

Missing pieces:
- Support for other drivers in Big Endian mode

AHCI
Intel NIC

- Fix dtrace
- Optimize libc to utilize SIMD instructions

Roadmanp:

- Provide support for Power9 with:

Little Endian,
XIVE interrupt controller
Radix page tables MMU
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Test setup:
e Power8 or 8-core Intel CPU running FreeBSD (DUT),

e Intel PC connected over 10Gb link with DUT,
e stock NGINX serving 200b file over HTTP,
e WRK tool being run on Intel PC.

Test:
e Run following command for 1/2/4/8/16 NGINX worker threads:

wrk -tl -cl00 -d30s http://192.168.1.10/index.html
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Performance - NGINX

100000

90000

80000

70000

60000

50000

40000

30000

20000

10000

NGINX HTTP reg/s

4

Number of NGINX workers (threads)

16

w— P owers
Intel 3GHz
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NVMe IOPS

IOPS

500000 = hs=512B, FreeBSD
= bs=4k, FreeBSD

400000 bs=512B, Linux
= hs=4k, Linux

300000

200000

100000

0
1 2 3 4

Instances
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